nieskończenie wiele rozwiązań. najlepiej podstaw a=1 i zapisz te rozwiązania dla a=2 brak rozwiązań , w licznikach masz liczbę różną od zera a w mianowniku 0. Posprawdzaj te wyznaczniki. 14 cze 00:59
Metoda wyznaczników Metoda ta służy do rozwiązywania układów równań – dwóch równań z dwiema niewiadomymi. Jest to bardzo prosta i schematyczna metoda, często używana w programowaniu. Wymaga jednak pamiętania wzoru, w odróżnieniu od metody podstawiania lub przeciwnych współczynników, gdzie pamiętać trzeba tylko schemat działania a nie wzór. Rozwinięciem tej metody jest twierdzenie Cramera. Aby rozwiązać układ równań metodą wyznaczników, należy skorzystać z podanego równania: \(\left\{\begin{matrix} {\color{DarkRed}{a_1}}x+{\color{DarkGreen}{b_1}}y={\color{DarkBlue}{c_1}}\\ {\color{DarkRed}{a_2}}x+{\color{DarkGreen}{b_2}}y={\color{DarkBlue}{c_2}} \end{matrix}\right.\) i obliczyć następujące wyznaczniki: \(W=\begin{vmatrix} {\color{DarkRed}{a_1}} & {\color{DarkGreen}{b_1}}\\ {\color{DarkRed}{a_2}} & {\color{DarkGreen}{b_2}} \end{vmatrix}={\color{DarkRed}{a_1}}\cdot {\color{DarkGreen}{b_2}} - {\color{DarkGreen}{b_1}} \cdot {\color{DarkRed}{a_2}}\) \(W_x=\begin{vmatrix} {\color{DarkBlue}{c_1}} & {\color{DarkGreen}{b_1}}\\ {\color{DarkBlue}{c_2}} & {\color{DarkGreen}{b_2}} \end{vmatrix}={\color{DarkBlue}{c_1}} \cdot {\color{DarkGreen}{b_2}} - {\color{DarkGreen}{b_1}}\cdot {\color{DarkBlue}{c_2}}\) \(W_y=\begin{vmatrix} {\color{DarkRed}{a_1}} & {\color{DarkBlue}{c_1}}\\ {\color{DarkRed}{a_2}} & {\color{DarkBlue}{c_2}} \end{vmatrix}={\color{DarkRed}{a_1}}\cdot {\color{DarkBlue}{c_2}} - {\color{DarkBlue}{c_1}}\cdot {\color{DarkRed}{a_2}}\) Po obliczeniu wyznaczników, możemy spotkać się z trzema przypadkami, zgodnie z którymi określamy rozwiązanie: 1) dla \(W\neq 0\), układ określa się jako oznaczony, czyli posiada on jedno rozwiązanie: \(\left\{\begin{matrix} x=\dfrac{W_x}{W}\\ \\ y=\dfrac{W_y}{W} \end{matrix}\right.\) 2) dla \(W=0\) i \(W_x=0\) i \(W_y=0\), układ jest nieoznaczony, posiada nieskończenie wiele rozwiązań. 3) dla \(W=0\) i jeśli choć jedno \(W_x\neq 0\) lub \(W_y \neq 0\) są różne od zera, to układ równań jest sprzeczny, czyli nie posiada rozwiązań. Przykładowe zadania Zad. 1) Rozwiąż metodą wyznaczników: \(\left\{\begin{matrix} 3x-y=1\\ x+2y=5 \end{matrix}\right.\) Zobacz rozwiązanie Zad. 2) Rozwiąż metodą wyznaczników: \( \left\{\begin{matrix} 3x+2y=-8\\ 4x-y=-7 \end{matrix}\right.\) Zobacz rozwiązanie Zad. 3) Rozwiąż metodą wyznaczników: \(\left\{\begin{matrix} 3x-2y=-16\\ 5x+3y=5 \end{matrix}\right.\) Zobacz rozwiązanie Zad. 4) Rozwiąż metodą wyznaczników: \(\left\{\begin{matrix} 5x-3y=-13\\ 20x+7y=-223 \end{matrix}\right.\) Zobacz rozwiązanie Zad. 5) Rozwiąż metodą wyznaczników: \(\left\{\begin{matrix} 7x-6y=52\\ 13x-3y=121 \end{matrix}\right.\) Zobacz rozwiązanie Zobacz również Równania trygonometryczne NWW - Najmniejsza wspólna wielokrotność Dodawanie i odejmowanie ułamków... Logika Właściwości i wzory logarytmów Stereometria Kąt półpełny Zbiór zdarzeń parami rozłącznych Jednomiany Kąt środkowy i wpisany Środkowa trójkąta Punkt przegięcia Zdarzenia przeciwne Kąty wierzchołkowe Kąt ostry
to wówczas układ ( ) ma nieskończenie wiele rozwiązań, zależnych od parametrów, czyli układ ( ) jest układem nieoznaczonym. 3) Układ równań m - równań liniowych o n – niewiadomych ( ) nie posiada żadnego rozwiązania , czyli jest układem sprzecznym , jeżeli rząd macierzy głównej układu jest różny od rzędu macierzy🎓 W zadaniu będziemy korzystać z metody rozwiązywania układów równań za pomocą wyznaczników. Przypomn Odpowiedź na zadanie z Matematyka 2. Poziom rozszerzony.
.